Variation in One Residue Associated with the Metal Ion-Dependent Adhesion Site Regulates αIIbβ3 Integrin Ligand Binding Affinity
نویسندگان
چکیده
The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS) divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252) and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS) of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252) to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.
منابع مشابه
Cation-π interaction regulates ligand-binding affinity and signaling of integrin α4β7
Integrin α4β7 mediates rolling and firm adhesion of leucocytes, two of the critical steps in leukocyte migration and tissue specific homing. Affinity of α4β7 for ligand is dynamically regulated by three interlinked metal ion-binding sites in β7-subunit I domain. In this study, we found that Phe185 (F185), a highly conserved aromatic residue in β7-subunit, links the specificity-determining loop ...
متن کاملAGDV tetrapeptide from KQAGDV binds to the αIIbβ3 headpiece with affinity comparable to the RGDSP peptide from fibronectin. AGDV induced complete headpiece opening in solution as shown by increase in hydrodynamic radius. Soaking of AGDV into closed αIIbβ3 headpiece crystals
The platelet integrin αIIbβ3 binds to a KQAGDV motif at the fibrinogen γ-chain Cterminus and to RGD motifs present in loops in many extracellular matrix proteins. These ligands bind in a groove between the integrin α and β subunits; the basic Lys or Arg sidechain hydrogen bonds to the αIIb-subunit and the acidic Asp sidechain coordinates to a metal ion held by the β3-subunit. Ligand binding ind...
متن کاملDistinct Roles of 1 Metal Ion-dependent Adhesion Site (MIDAS), Adjacent to MIDAS (ADMIDAS), and Ligand-associated Metal-binding Site (LIMBS) Cation-binding Sites in Ligand Recognition by Integrin 2 1*
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as 2 1, ligand recognition takes place exclusively at the subunit I domain. However, activation of the I domain depends on its interactionwith a structurally similar domain...
متن کاملComplete integrin headpiece opening in eight steps
Carefully soaking crystals with Arg-Gly-Asp (RGD) peptides, we captured eight distinct RGD-bound conformations of the αIIbβ3 integrin headpiece. Starting from the closed βI domain conformation, we saw six intermediate βI conformations and finally the fully open βI with the hybrid domain swung out in the crystal lattice. The β1-α1 backbone that hydrogen bonds to the Asp side chain of RGD was the...
متن کاملLocking the beta3 integrin I-like domain into high and low affinity conformations with disulfides.
Although integrin alpha subunit I domains exist in multiple conformations, it is controversial whether integrin beta subunit I-like domains undergo structurally analogous movements of the alpha7-helix that are linked to affinity for ligand. Disulfide bonds were introduced into the beta(3) integrin I-like domain to lock its beta6-alpha7 loop and alpha7-helix in two distinct conformations. Solubl...
متن کامل